Observe that the document has spaced out the problems so that there space for comments.

Chapter 3 Problems

1. Prove the right and left cancellation laws for a group G, stated formally below.

Let *G* be a group and suppose $a, b, c \in G$.

- Prove that if ab = ac, then b = c.
- Prove that if ba = ca, then b = a.

Proof:

MATH 405	HW 3	Spring 2024

2. Let *G* be a group and suppose that for every $a, b \in G$, $(ab)^2 = a^2b^2$. Prove that *G* must be abelian.

Proof:

MATH 405

3. List all the subgroups of the symmetry group of an equilateral triangle.

List:

Chapter 4 Problems

- 4. All questions below are about U(10), the group of units of \mathbb{Z}_{10} . (Recall that the definition of U(n) and an example U(8) are on page 43 of our text.)
 - (a) List the elements of U(10). List:
 - (b) Show that U(10) is cyclic. **Answer:**
 - (c) Find all generators of U(10). Answer:
 - (d) Find an element $a \in U(10)$, such that $a \neq 1$ and $a^2 = 1$. Answer:
 - (e) Prove that there always exists some $a \in U(n)$ such that $a \neq 1$ and $a^2 = 1$. **Proof:**

- 5. Prove or disprove the following statements.
 - (a) All the generators of \mathbb{Z}_{60} are prime. Answer:
 - (b) U(8) is cyclic. **Answer:**
 - (c) $(\mathbb{Q},+)$ is cyclic. Answer:
 - (d) If every proper subgroup of a group G is cyclic, then G itself must be cyclic. **Answer:**
 - (e) If the group G has a finite number of subgroups, then G is finite. Answer:

MATH 405	HW 3	Spring 2024
6. Observe that $A = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$	$\begin{bmatrix} 1\\ 0 \end{bmatrix} \text{ and } B = \begin{bmatrix} 0 & -1\\ 1 & -1 \end{bmatrix} \text{ are elements of } GL_2(\mathbb{R}). \text{ Fin}$	ad $ A $, $ B $ and $ AB $.

(You are strongly encouraged to use technology here!)

What curious thing do you observe?

Answer:

7. Prove that if *p* is prime, then \mathbb{Z}_p has no nontrivial, proper subgroups.

Proof:

- 8. Let $\sigma = (14376)$ and $\tau = (156)(234)$.
 - (a) Express $\sigma \tau$ and $\tau \sigma$ as a cycle or a product of disjoint cycles. Answer:
 - (b) Express σ and τ as a product of transpositions and identify each as even or odd. Answer:
 - (c) Find σ^{-1} . Write is as a cycle or a disjoint product of cycles. Answer:
 - (d) Explain why any permutation of $\sigma \in S_n$ can be written as the product of at most n-1 transpositions. **Answer:**

MATH 405	HW 3	Spring 2024

9. Show that A_{10} contains an element of order 15. (Note that it is not enough to find such an element. You need to both be certain it is in A_{10} and demonstrate how you know its order.)