For each problem below, *G* is a group with subgroups *H* and *K*.

- 1. Prove that $H \cup K$ is not necessarily a group of G. Answer:
- 2. Prove that $H \cap K$ is a subgroup of G. **Proof:**
- 3. Let $HK = \{hk : h \in H \text{ and } k \in K\}$. Prove that HK is not necessarily a subgroup of G. **Proof:**
- 4. Let $HK = \{hk : h \in H \text{ and } k \in K\}$. Prove that if G is abelian, then HK is a subgroup of G. **Proof:**