For each problem below, G is a group with subgroups H and K.

(a) List all possible (disjoint) cycle structures of A₅. (Here are some of the questions you should be asking yourself. Can A₅ have a permutation consisting of single 5-cycle? 4-cycle? 3-cycle? ... Can A₅ have a permutation consisting of a 3-cycle and a (disjoint) 2-cycle?...)
 Answer:

(b) List all possible (disjoint) cycle structures of A_6 . Answer:

- 2. All questions below are about D_5 , the 5th dihedral group.
 - (a) Write out all the elements of D_5 using permutation notation. (Assume the letters $\{1,2,3,4,5\}$ are in cyclic order along the regular 5-gon.) Answer:

(b) Make a specific choice of r and s such that every element of D_5 can be written in the form $s^a r^b$ in that order for appropriate choice of a and b. Answer:

(c) Using your choice of *r* and *s* above write every element of D_5 in the form $r^b s^a$ in that order for appropriate choice of *a* and *b*. **Answer:**

- 3. Let G be a group and let $a \in G$. Define $f_a(x) : G \to G$ by f(x) = ax. We claim f is a permutation of G.
 - (a) Assume G = U(9) = {1,2,4,5,7,8} and a = 8. Describe f₈(x), the permutation of U(9) determined by 8, using cycle notation.
 Answer:

(b) Prove that for any group G and any a ∈ G, f_a(x) is a permutation of G. (You should start by remembering the definition of a permutation.)
 Proof:

- 4. For each group G and subgroup H, identify all the left and right cosets of H in G. Use the notation we used in class. It is sufficient to simple state them. You do not need to give an explanation of your work.
 - (a) $G = \mathbb{Z}, H = 3\mathbb{Z}$ Answer:

(b)
$$G = \mathbb{Z}_{12}, H = \langle 4 \rangle$$

Answer:

- (c) $G = S_4, H = A_4$ **Answer:**
- (d) $G = S_4, H = D_4$ Answer:
- (e) $G = S_4, H = \{(), (123), (132)\}$ (Find left cosets only.) Answer:
- (f) Give an example of a group G and subgroup H of G such that H will have an infinite number of left cosets in G.Answer:

- 5. Let *G* be a group, *H* a subgroup of *G*, and $g_1, g_2 \in G$. Prove each implication below **using first principles**. This means you can use only definitions. You cannot use Lemma 6.3. (You are proving part of Lemma 6.3 in this problem.)
 - (a) Prove that if $g_1H \subseteq g_2H$, then $g_1H = g_2H$. **Proof:**

(b) Prove that $g_1H = g_2H$ if and only if $g_1^{-1}g_2 \in H$. (You may use part (a) from this problem.) **Proof:**

6. Let G be a group and H a subgroup of G. Prove that if $ghg^{-1} \in H$, for every $g \in G$ and for every $h \in H$, then gH = Hg for all $g \in G$. (This is, under the condition $ghg^{-1} \in G$, left and right cosets are the same. Give a careful argument here.) **Proof:** 7. Suppose that [G:H] = 2. Prove that for every $a, b \in G \setminus H$, $ab \in H$. **Proof:**

8. Prove that if [G:H] = 2, then gH = Hg for every $g \in G$. **Proof:**