1. **Definition:** The center of a group is

 $Z(G) = \{ g \in G \mid gx = xg \text{ for all } x \in G \}.$

That is, an element of G is in the center of G if it commutes will all other elements in the group. Find Z(G) for each group below. Bald answers are ok here.

(a) $G = (\mathbb{Z}, +)$ Answer:

(b) $G = S_3$ **Answer:**

(c) $G = D_6$ **Answer:**

2. Lemma 6.3 tells us that for $H \le G$, a group and for any $g_1, g_2 \in G$ the statement $g_1H = g_2H$ is equivalent to $Hg_1^{-1} = Hg_2^{-1}$. The Lemma does **not** say $g_1H = g_2H$ is equivalent to $Hg_1 = Hg_2$. Why? Either this second equivalence is **implied** or it is false. If it is implied, then prove it. If it is false, prove that.

Conclusion:

Proof of Conclusion:

MATH 405	HW 6	Spring 2024
3. Give a detailed proof that every cyclic group of order <i>n</i> is isomorphic to $(\mathbb{Z}_n, +)$.		

Proof:

4. Prove or disprove: $U(8) \cong \mathbb{Z}_4$

Proof:

5. Let $G = \mathbb{R} \setminus \{-1\}$ with binary operation * defined as

$$a * b = a + b + ab.$$

Recall that in Homework 2, you proved that *G* is a group with this operation. Prove that $(G,*) \cong (\mathbb{R}^*, \cdot)$.

Proof:

- 6. Find the order of each of the following elements. Bald answers are acceptable here.
 - (a) (3,4) in $\mathbb{Z}_4 \times \mathbb{Z}_6$ Answer:

(b) (6,15,4) in $\mathbb{Z}_{30} \times \mathbb{Z}_{43} \times \mathbb{Z}_{24}$ Answer:

- (c) (5, 10, 15) in $\mathbb{Z}_{25} \times \mathbb{Z}_{25} \times \mathbb{Z}_{25}$ Answer:
- (d) (8,8,8) in $\mathbb{Z}_{10} \times \mathbb{Z}_{24} \times \mathbb{Z}_{80}$ Answer:

7. (a) Find nontrivial subgroups *H* and *K* of *U*(9) such that *U*(9) is an internal direct product of *H* and *K*. Prove your answer is correct.
Answer: *H* = {}, *K* = {}
Proof:

(b) Theorem 9.27 says that if *G* is an internal direct product of *H* and *K*, then *G* is **isomorphic** to the external direct product $H \times K$. Explicitly write all the elements in the group $H \times K$ along with the associcated group operation(s). Then state explicitly an isomorphism between *G* and $H \times K$.

Group Elements: $H \times K = \{\}$ **Isomorphism:** Your *f* goes here.

8. Prove that D_4 cannot be the internal direct product of two of its proper subgroups. **Proof:**

9. Let *G* be a group and $g \in G$. Define the function $f_g(x) : G \to G$ by $f_g(x) = gxg^{-1}$. Prove that f_g is an isomorphism from *G* to itself. (Such a function is called an **automorphism** of *G*.) **Proof:**

10. Prove that if $G \cong G'$ and $H \cong H'$, then $G \times H \cong G' \times H'$.

