1. (a) Write out the elements of $G = \mathbb{Z}_6$ and $H = \mathbb{Z}_2 \times \mathbb{Z}_3$ and then find a function, ϕ , that demonstrates that $G \cong H$ and show that your function is an isomorphism.

Elements of \mathbb{Z}_6 : Elements of $\mathbb{Z}_2 \times \mathbb{Z}_3$: Proof that $G \cong H$:

(b) Prove that $G = \mathbb{Z}_3 \times \mathbb{Z}_4$ and $H = \mathbb{Z}_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic. **Proof**:

2. For each of the following groups G, determine whether H is a normal subgroup of G. If H is a normal subgroup, write out a Cayley table for the factor group of G/H.

(a) $G = S_4, H = A_4$.

Answer:

Here is a sample Cayley table for U(8). In the LATEX code, the symbol & separates the column entries in a row.

	1	3	5	7
1	1	3	5	7
3	3	1	7	5
5	5	7	1	3
7	7	5	3	1

(b) $G = A_5, H = \{(), (123), 132\}$. (Hint: Use a Theorem from this section.)

Answer:

(c) $G = S_4, H = D_4$.

Answer:

(d) $G = \mathbb{Z}, H = 5\mathbb{Z}.$

Answer:

- 3. (a) Find all subgroups of D_4 . **Answer**:
 - (b) Identify which of the subgroups of D_4 are normal. **Answer**:
 - (c) Describe each of the **nonisomorphic** factor groups of D_4 . **Answer**:

- 4. Let *T* be the group of 2×2 matrices of the form $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ where $a, b, c \in \mathbb{R}$ and $ac \neq 0$. The group operation is **matrix multiplication**. Let *U* consist of all matrices of the form $\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}$ where $x \in \mathbb{R}$.
 - (a) By example, confirm that T is not abelian.

Answer:

(b) Given
$$C = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in T$$
, find C^{-1} and confirm that it is in T .

Answer:

- (c) Prove $U \leq T$. **Proof**:
- (d) Prove *U* is abelian. **Proof**:
- (e) Prove $U \lhd T$. **Proof**:
- (f) Prove T/U is abelian. **Proof**:
- (g) Is T normal in $GL_2(\mathbb{R})$? Justify your answer. Answer:

5. Show that the intersection of two normal subgroups is normal. **Proof**:

- 6. Define the **centralizer** of an element g in a group G to be the set $C(g) = \{x \in G : xg = gx\}$.
 - (a) Find $C(\rho)$, where $\rho = (12)$ and $G = S_4$. Answer:

(b) Prove that C(g) is a subgroup of G. **Proof**: