Problems 1 and 2 below use a problem from HW 6 #9 about **automorphisms** of groups, restated below. You may want to reference the Fact in your proofs.

Definition 1: Let *G* be a group. An isomorphism ϕ : $G \rightarrow G$ is called an **automorphism**. (That is, an automorphism is an isomorphism from a group to itself.)

Fact (that you proved): Let *G* be a group and $g \in G$. The function $f_g : G \to G$ defined as

$$
f_g(x) = gxg^{-1}
$$

is an automorphism of *G*.

Definition 2: Let *G* be a group. An automorphism $f: G \to G$ defined by $f_g(x) = g x g^{-1}$ is called an inner **automorphism.**

1. (a) Prove that if *G* is a group with subgroup *H* and $g \in G$, then the set $gHg^{-1} = \{ghg^{-1} : h \in H\}$ is a subgroup of *G*.

Proof:

(b) Prove that if a group *G* has exactly one subgroup *H* of order *k*, than *H* must be normal in *G*.

2. (a) Let $G = S_3$ and $g = (12)$. Describe the inner automorphism f_g by filling out the table below. (Note that I filled out one row for you.)

(b) Let $G = \mathbb{Z}_3$ and $g = 1$. Describe the inner automorphism f_g by filling out the table below.

(c) If *G* is abelian, what can you conclude about inner automorphisms of *G*? Justify your answer.

Answer:

(d) Let $G = \mathbb{Z}_3$. Describe an automorphism of *G* that is not an inner automorphism.

$$
\begin{array}{c|c}\nx & f_g(x) \\
0 & 1 \\
2 & \n\end{array}
$$

(e) You have shown that some automorphisms can be constructed as inner automorphisms, but not all are of that form. Let $Aut(G)$ be the set of all automorphisms of the group *G*. Prove that this set forms a group under the operation of function composition. (That is, you are proving that $Aut(G) \leq S_G$.)

3. Recall that the elements of group \mathbb{Z}_n are equivalence classes. Specifically, $\mathbb{Z}_8 = \{ [0], [1], \ldots, [7] \}$ where $[k] = \{k + 8n : n \in \mathbb{Z}\}$ even though we often actually write $\mathbb{Z}_8 = \{0, 1, 2, \ldots, 7\}$. Similarly, $\mathbb{Z}_{20} = \{ [0], [1], \ldots, [19] \}$ where $[k] = \{ k + 20n : n \in \mathbb{Z} \}.$

For clarity, you may want to use $[k]_8$ and $[k]_{20}$ to distinguish between whether an equivalence class with representative *k* is an element in \mathbb{Z}_8 or \mathbb{Z}_{20} .

(a) Show that the map $f : \mathbb{Z}_8 \to \mathbb{Z}_{20}$ defined as $f(k) = 4k$ is **not** well-defined. (That is, different representatives of $[k]_8$ may be mapped to different elements of \mathbb{Z}_{20} .)

Answer:

(b) Show that the map $f : \mathbb{Z}_8 \to \mathbb{Z}_{20}$ defined as $f(k) = 5k$ is well-defined.

Answer:

(c) Prove that the map $f : \mathbb{Z}_8 \to \mathbb{Z}_{20}$ defined as $f(k) = 5k$ is a group homomorphism and determine the kernel and image of *f*. kernel:

image:

- 4. For each map below, determine if it is a homomorphism. (You don't have to **prove** it is or isn't a homomorphism.) If it is a homomorphism, determine its kernel and its image.
	- (a) $\phi : \mathbb{R}^* \to GL_2(\mathbb{R})$ defined by $\phi(a) = \begin{pmatrix} 1 & 0 \\ 0 & a \end{pmatrix}$ 0 *a* \setminus . Answer:

(b)
$$
\phi : \mathbb{R} \to GL_2(\mathbb{R})
$$
 defined by $\phi(a) = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix}$.
Answer:

(c)
$$
\phi : GL_2(\mathbb{R}) \to \mathbb{R}
$$
 defined by $\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = a + d$
Answer:

(d)
$$
\phi : GL_2(\mathbb{R}) \to \mathbb{R}^*
$$
 defined by $\phi \left(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \right) = ad - bc$
Answer:

(e) $\phi : \mathbb{M}_2(\mathbb{R}) \to \mathbb{R}$ defined by $\phi\left(\begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) = b$ where $\mathbb{M}_2(\mathbb{R})$ is the additive group of 2×2 matrices with entries in R. Answer:

5. Let *A* be an $m \times n$ matrix. Show that matrix multiplication, $x \to Ax$, defines a homomorphism $\phi: \mathbb{R}^n \mapsto \mathbb{R}^m$.

Proof:

6. If *G* is an abelian group and $n \in \mathbb{N}$, show that $\phi : G \to G$ defined by $g \mapsto g^n$ is a group homomorphism.

Proof:

generator of the group.

8. If *H* and *K* are normal subgroups of *G* and $H \cap K = \{e\}$, prove that *G* is isomorphic to a subgroup of $G/H \times G/K$.