MATH 405	HW 9	Spring 2024
1. Let $W: G \to H$ be a group	up homomorphism. Prove that w is one-to-	one if an only if $W^{-1}(e_H) = e_C$.

1. Let $\psi: G \to H$ be a group homomorphism. Prove that ψ is one-to-one if an only if $\psi^{-1}(e_H) = e_G$. **Hint:** You should use the First Isomorphism Theorem to prove one direction of the if and only if statement.

Proof:

2. Prove that if G is a finite group and $\phi : G \to H$ is a group homomorphism, then $|\phi(G)|$ divides both |G| and |H|.

Proof:

3. Find all of the homomorphisms from $\phi : \mathbb{Z} \to \mathbb{Z}$. Justify your answer. **Hint:** For this problem and the next, you may want to use some facts you proved in HW 8.

Answer: Justification:

4. (a) Find all of the automorphisms of \mathbb{Z}_8 and explain your reasoning.

Answer with explanation:

(b) Prove that $\operatorname{Aut}(\mathbb{Z}_8) \cong U(8)$. Recall that $\operatorname{Aut}(G)$ is the group of automorphisms of *G* under the operation of function composition.

Proof:

5. (a) Find all abelian groups of order *n* for $n \in \{15, 16, 17, 18, 19, 20\}$.

Answer:

(b) For each nonisomorphic group of order 18, find an element of order 3.

Answer:

- 6. Which of the following sets are rings? If it is a ring, does it have a multiplicative identity? Is it commutative? An integral domain? A division ring? What are its units, if any? Is it a field? (You decide your explanations. Speak to your future self!)
 - (a) $7\mathbb{Z}$ with usual addition and multiplication

question	answer
a ring?	Answer here!
with unity?	Answer here!
commutative?	Answer here!
an integral domain?	Answer here!
its units?	Answer here!
a division ring?	Answer here!
a field?	Answer here!

(b) \mathbb{Z}_7 with usual addition and multiplication

(c) \mathbb{Z}_{18} with usual addition and multiplication

(d) $\mathbb{Q}(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ with usual addition and multiplication

question	answer
a ring?	
with unity?	
commutative?	
an integral domain?	
its units?	
a division ring?	
a field?	

(e) $R = \{a + b\sqrt[3]{2} : a, b \in \mathbb{Q}\}$ with usual addition and multiplication

questionanswera ring?with unity?with unity?commutative?an integral domain?its units?a division ring?a field?

(f) $\mathbb{M}_2(\mathbb{Z}_2)$, the set of 2 × 2 matrices with entries from \mathbb{Z}_2 with usual matrix addition and multiplication

(g) $\mathbb{R}_1[x] = \{ax + b : a, b \in \mathbb{R}\}$, the set of linear polynomials with real coefficients with the usual addition and multiplication

questionanswera ring?with unity?with unity?commutative?an integral domain?its units?a division ring?a field?

(h) $\mathbb{R}_{\infty}[x]$ the set of all polynomials with real coefficients with the usual addition and multiplication

questionanswera ring?with unity?with unity?commutative?an integral domain?its units?a division ring?a field?