NAME:

Instructions: Answer questions in the space provided. You will be graded both on correctness and presentation. This test has 7 questions worth a total of 100 points.

- 1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.
 - (a) Two nonisomorphic groups of order 20.
 - (b) An infinite nonabelian group.
 - (c) A group with two distinct subgroups of order 5.
 - (d) A nonabelian group of order 11.
 - (e) An element of order 10 in S_7 .
 - (f) An element of order 10 in A_7 .

2. (12 points) Consider the permutation group S_8 , and let $\alpha = (1235)(24567)(1572)$.

Test 1

(a) Express α as a product of disjoint cycles.

(b) What is the inverse of α ?

(c) What is the order of α ?

(d) Is α an even or odd permutation?

3. (10 points)

(a) State the definition of an automorphism of a group G.

(b) Find the group of automorphisms of the cyclic group $Z_{18} = \langle a \rangle$.

(c) List all subgroups of Z_{18} .

- 4. (10 points)
 - (a) Show that U(21) is not isomorphic to \mathbb{Z}_{12} .

(b) Show that D_6 is not isomorphic to A_4 .

5. (20 points)

- (a) State the definition of a group isomorphism.
- (b) Define the following set of matrices:

$$G = \left\{ \begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} \middle| a \in \mathbb{Z} \right\}.$$

The set G under matrix multiplication is a group. (You don't need to prove that G is a group.) Prove that G is isomorphic to \mathbb{Z} .

- 6. (20 points)
 - (a) State the definition of a group.

(b) Let $S = \{x \in \mathbb{R} \mid x \neq 0\}$ be the set of nonzero real numbers, and define a binary operation on S by the formula $a \star b = 2ab$. Is S with this binary operation a group? Prove or disprove.

7. (10 points) Prove that for any group G and any $a, b \in G$, |ab| = |ba|.