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NAME:
SOLUTIONS

1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why
such examples do not exist.

(There are many answers here.)

(a) A subring S of a ring R such that S is not an ideal of R

Let R = R[x] and let A = R. We know A is itself a ring and since it is contained in R it is
certainly a subring. It is not closed under multiplication from outside. That is x ·2 6∈ A.

(b) A group G, subgroup H of G and an element a ∈ G such that aH 6= Ha.

Let G = S3 and H = {(), (12)}. Pick a = (23). Then aH = {(23), (13)} but Ha =
{(12), (231)}.

(c) A ring R in which the group of units of R is a proper subset of the non-zero elements of R

Pick R = Z. The units of R are {−1, 1} which is certainly a proper subset of the nonzero
elements of R.

(d) An infinite ring with zero divisors. (State the ring R and an example of a zero divisor.)

Pick R = Z⊕ Z which is certainly infinite. The element (2, 0) is a zero divisor. (Mul-
tiply it by (0, 5).)

(e) A ring R with ideal A such that A is prime but not maximal

The ring R = Z[x] and the ideal A = 〈x〉.

2. (10 points) List all abelian groups of order 225 = 9 · 25 up to isomorphism. Do not write
any isomorphism class more than once. For each distinct group, determine the number of
elements of order 3. (Note, a bald answer is acceptable here.)

# elements of order 3
Z9 ⊕ Z25 Z9 ⊕ Z5 ⊕ Z5 2 (in Z9, elements 3 and 6)
Z3 ⊕ Z3 ⊕ Z25 Z3 ⊕ Z3 ⊕ Z5 ⊕ Z5 2+2+4=8 in Z3 ⊕ Z3 :

(1, 0), (2, 0), (0, 1), (0, 2), (1, 1), (1, 2), (2, 1), (2, 2)



Math 405 Abstract Algebra Test 2
Spring 2017

18 April

3. (10 points) Let a be an element in the ring R. Let S = {r ∈ R | ar = 0}. Is S a subring of
R? Prove your answer is correct.

Answer: S is a subring.
Proof: I will proceed by the Subring Test.
Since a · 0 = 0, we know 0 ∈ S. Thus S is nonempty and the Subring Test applies.
Let r, s ∈ S. Now a(r − s) = ar − as = 0− 0 = 0. Thus, r − s ∈ S.
Let r, s ∈ S. Now, a(rs) = (ar)s = 0 · s = 0. Thus, rs ∈ S.
Thus, by the Subring Test, S is a subring of R.

4. (15 points)

(a) State Lagrange’s Theorem

Let H be a subgroup of the finite group G. Then |H| | |G|. Moreover, |G : H| = |G|/|H|.

(b) Use Lagrange’s Theorem to prove that the order of each element of a finite group must
divide the order of the group.

Let a ∈ G where G is a finite group. Then 〈a〉 ≤ G and |a| = |〈a〉|. Now Lagrange’s
Theorem implies that |a| = |〈a〉| | |G|.

(c) Prove that every group of order 63 must have an element of order 3.

Let G be a group of order 63. Since 63 = 32 · 7, we know from part (b) above that
every a ∈ G, |a| ∈ {1, 3, 7, 9, 21, 63}. We know that in any finite group, the number of
elements of order 7 must be a multiple of φ(7) = 6 and 6 does not divide 62. Thus,
we know G must contain at least one nonidentity element whose order in in the set
{3, 9, 21, 63}.
If |a| = 3, the statement follows.
If |a| = 9, then |a3| = 3.
If |a| = 21, then |a7| = 3.
If |a| = 63, then |a21| = 3.
Thus, in all cases, G contains an element of order 3.

5. (20 points)

(a) Recall that D6 is the group of symmetries of a regular hexagon and the center of D6 is
Z(D6) = {R0, R180}. What is the order of the element R60 Z(D6) in the factor group
D6/Z(D6)?

Since R60 and R60R60 = R120 6∈ Z(D6), but R60R60R60 = R180 ∈ Z(D6), we conclude
that the order of R60 Z(D6) in the factor group D6/Z(D6) is 3.

(b) Let G = Z4 ⊕ Z4 and let K = 〈(1, 2)〉.
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i. List the elements of K.

K = {(1, 2), (2, 0), (3, 2), (0, 0)}

ii. List the elements of G/K.

G/K = {K, (1, 0) +K, (1, 1) +K, (0, 1) +K}.

iii. Is G/K isomorphic to any of the following groups?

D4(the symmetries of a square), Z6, Z4, Z2 ⊕ Z2 or Z2

Explain your answer.

Observe that the order of element (1, 1) +K is 4. Thus, G/K is isomorphic to Z4.

6. (15 points) Define the mapping φ : Z⊕ Z→ Z as φ(a, b) = a− b.

(a) Prove that φ is a group homomorphism.

We need to show that φ is operation preserving. Let (a, b), (c, d) ∈ Z⊕ Z. Then,

φ((a, b)+(c, d)) = φ(a+c, b+d) = (a+c)− (b+d) = (a−b)+(c−d) = φ(a, b)+φ(c, d).

(b) Find the kernel of φ.

We need to find all ordered pairs (a, b) such that φ(a, b) = a − b = 0. Thus, kerφ =
{(a, a) | a ∈ Z}.

(c) Find φ−1(3).

Since φ(3, 0) = 3, we know φ−1(3) = (3, 0) + ker φ = {(3 + a, a) | a ∈ Z}.

7. (15 points)

(a) State the definition of a field F.

A field is a commutative ring with unity such that every nonzero element has a multi-
plicative inverse.

(b) Prove that if F is a nontrivial field, then F has exactly two ideals.

Assume F is a nontrivial field. Let A be an ideal of F such that A contains at least one
nonzero element. (That is, A is not the zero ideal.) Let r ∈ A−{0}. Since F is a field,
r−1 ∈ F. Since A is an ideal, r−1r ∈ A. Thus, 1 ∈ A. Now for every s ∈ R, s · 1 ∈ A.
Thus, A = R. Thus, we have shown that any ideal that is not the zero ideal must be
the whole field.
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(c) Prove that if R is a commutative ring with unity such that the only ideals of R are {0}
and R, then R must be a field.

If the only ideals of R are R and {0}, then {0} is a maximal ideal. Since R is commu-
tative with 1 and {0} is maximal, the factor ring R/{0} is a field. But R/{0} = R.
Thus, R is a field.

One can also prove it directly without much trouble. That is, we need to show that
every nonzero element of R is a unit. Let a ∈ R−{0} and consider the ideal generated
by a, 〈a〉 = {ra | r ∈ R}. Since by assumption 〈a〉 = R, we know there exists some
r ∈ R such that ra = 1. Thus, r = a−1.


