NAME:

Instructions: Answer questions in the space provided. You will be graded both on correctness and presentation. This test has 6 questions worth a total of 100 points.

- 1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.
 - (a) A group G of order at least 3 such that the only subgroups of G are e and G.
 - (b) A group G with two elements $a, b \in G$ such that $|a| < \infty$ and $|b| = \infty$
 - (c) A non-cyclic Abelian group.
 - (d) An element of order 15 in S_8 .
 - (e) An infinite, noncyclic group.
 - (f) Two nonisomorphic groups of order 18.
- 2. (16 points) Consider the permutation group S_8 , and let $\sigma = (13256)(23)(78)(46512)$.
 - (a) Express σ as a product of disjoint cycles.
 - (b) Express σ as a product of transpositions.
 - (c) Give, in disjoint cycle notation, the element σ^{101} .

- 3. (16 points) Consider the cyclic group G of order 24 generated by a. (So $G = \langle a \rangle$.)
 - (a) State a necessary and sufficient condition for an element a^k to generate G.
 - (b) State explicitly all generators of G.
 - (c) Use Fundamental Theorem of Cyclic Groups to give the orders of all subgroups of G.
- 4. (20 points)
 - (a) State the definition of a group.

(b) Let G be an Abelian group and let H be the subset of elements of finite order from G. Prove that $H \leq G$.

5. (20 points)

- (a) State the definition of a group isomorphism.
- (b) Let G be a group. Show that $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is an isomorphism if and only if G is Abelian.

6. (10 points) Prove that every group of order 4 is Abelian.