- 1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.
 - (a) A group G of order at least 3 such that the only subgroups of G are e and G. \mathbb{Z}_p for $p \geq 3$ a prime
 - (b) A group G with two elements $a, b \in G$ such that $|a| < \infty$ and $|b| = \infty$ G = Z, a = 0, b = 1
 - (c) A non-cyclic Abelian group. G = U(8)
 - (d) An element of order 15 in S_8 . (123)(45678)
 - (e) An infinite, noncyclic group.
 GL(2, ℝ)
 - (f) Two nonisomorphic groups of order 18. \mathbb{Z}_{18} and D_9
- 2. (16 points) Consider the permutation group S_8 , and let $\sigma = (13256)(23)(78)(46512)$.
 - (a) Express σ as a product of disjoint cycles. (124)(35)(6)(78)
 - (b) Express σ as a product of transpositions. (14)(12)(35)(78)
 - (c) Give, in disjoint cycle notation, the element σ^{101} . Since $|\sigma| = 6$ and $101 = 6 \cdot 16 + 5$, $\sigma^{101} = \sigma^5 = \sigma^{-1} = (142)(35)(6)(78)$
- 3. (16 points) Consider the cyclic group G of order 24 generated by a. (So $G = \langle a \rangle$.)
 - (a) State a necessary and sufficient condition for an element a^k to generate G. gcd(24, k) = 1
 - (b) State explicitly all generators of G. $a, a^5, a^7, a^{11}, a^{13}, a^{17}, a^{19}, a^{23}$
 - (c) Use Fundamental Theorem of Cyclic Groups to give the orders of all subgroups of G. Since G is cyclic, we know $k \mid 24$ if and only if G contains a subgraph of order k. Thus, G contains subgroups of order 1, 2, 3, 4, 6, 8, 12, and 24.

4. (20 points)

(a) State the definition of a group.A group is a set G and a binary operation on G such that

- i. the operation is closed $(\forall a, b \in G, ab \in G)$,
- ii. the operation is associative $(\forall a, b, c \in G, a(bc) = (ab)c)$,
- iii. there exists an identity element $(\exists e \in G, \text{ such that } \forall g \in G \ ge = eg = g)$, and
- iv. every element has an inverse $(\forall g \in G, \exists h \in G, \text{ such that } gh = hg = e)$.

Note that because the definition of *binary operation* implies closure, you technically do not have to include that though I usually do anyway....

(b) Let G be an Abelian group and let H be the subset of elements of finite order from G. Prove that $H \leq G$.

(I will use the two-step subgroup theorem.)

Let G be an Abelian group and let H be the subset of elements of finite order from G. Since |e| = 1, we know $e \in H$. So H is nonempty.

Let $a, b \in H$. Then |a| = m and |b| = n for some $m, n \in \mathbb{Z}$. Now

 $(ab)^{mn} = a^{mn}b^{mn}$ since G is Abelian $= (a^m)^n(b^n)^m$ properties of exponents $= e^n e^m$ since |a| = m and |b| = nThus $|ab| \le mn$ and we know = e. $ab \in H.\checkmark$

Finally, we know that $(a^{-1})^m = (a^m)^{-1} = e^{-1} = e$. So $a \in H$ implies $a^{-1} \in H$.

[Observe that this is Example 6 on page 63.]

5. (20 points)

- (a) State the definition of a group isomorphism. Let G and \overline{G} be groups. The function $\phi: G \to \overline{G}$ is an isomorphism if
 - i. ϕ is a bijection, and
 - ii. ϕ is operation preserving $(\forall a, b \in G, \phi(ab) = \phi(a)\phi(b))$.
- (b) Let G be a group. Show that $\phi: G \to G$ defined by $\phi(g) = g^{-1}$ is an isomorphism if and only if G is Abelian.

	Test 1	Spring 2016
Math 405 Abstract Algebra	Solutions	24 February
Proof: $(\Longrightarrow:)$ Assume ϕ $b^{-1}a^{-1} = (ab)^{-1}$		Then for all $a, b \in G$, we know
$= \phi(ab)$	by the definition of ϕ	
$= \phi(a)\phi(b)$	since ϕ is order preserving	

 $= a^{-1}b^{-1}$ by the definition of ϕ .

Now, multiply both sides of $b^{-1}a^{-1} = a^{-1}b^{-1}$ on the left by ab and on the right by ba, we obtain, $ab(b^{-1}a^{-1})ba = ab(a^{-1}b^{-1})ba$ which simplifies to ab = ba. Since a and b were arbitrary, we have shown that G is Abelian.

 $(\Leftarrow :)$ Assume G is abelian.

(ϕ is one-to-one) Assume there exist $a, b \in G$ such that $\phi(a) = \phi(b)$. Then by the definition of ϕ , $a^{-1} = b^{-1}$. Operate on the left by a and the right by b, we obtain b = a. So ϕ is one-to-one.

(ϕ is onto) Let $a \in G$. Then $a^{-1} \in G$. Now $\phi(a^{-1}) = a$. Thus ϕ is onto. (ϕ is operation preserving) Let $a, b \in G$. Now,

 $\phi(ab) = (ab)^{-1}$ by the definition of ϕ = $b^{-1}a^{-1}$ by Socks and Shoes = $a^{-1}b^{-1}$ since G is Abelian

 $= \phi(a)\phi(b)$ by the definition of ϕ .

Thus, we have shown that ϕ is operation preserving.

6. (10 points) Prove that every group of order 4 is Abelian.

Proof: (by contradiction) Assume $a, b \in G$ and $ab \neq ba$. Then, neither a nor b can be the identity, which commutes with all elements. Further, a and b are not inverses of each other, since these too commute. (i.e. $aa^{-1} = a^{-1}a$) Thus, ab and ba must be distinct from e, a, b and each other. So $|G| \geq 5$, a contradiction.

Proof: (direct) If G is cyclic, then G is Abelian. So, assume G has order 4 and is not cyclic. Let $a \in G - e$. Since G is not cyclic, there exists $b \in G$ such that $b \notin \langle a \rangle$. Since G is a group, $ab \in G$ and $ba \in G$. But neither ab nor ba can be elements of $\langle a \rangle$ because $b \notin \langle a \rangle$. Thus we know $G = \{e, a, b, ab, ba\}$. It is now sufficient to show that ba = ab. A case analysis shows the other possibilities are impossible:

ba = e implies $b = a^{-1} \in \langle a \rangle$ ba = a implies $b = e \in \langle a \rangle$ ba = b implies a = e