
Math 405 Abstract Algebra
Test 1

Solutions
Spring 2016
24 February

1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why
such examples do not exist.

(a) A group G of order at least 3 such that the only subgroups of G are e and G.
Zp for p ≥ 3 a prime

(b) A group G with two elements a, b ∈ G such that |a| <∞ and |b| =∞
G = Z, a = 0, b = 1

(c) A non-cyclic Abelian group.
G = U(8)

(d) An element of order 15 in S8.
(123)(45678)

(e) An infinite, noncyclic group.
GL(2,R)

(f) Two nonisomorphic groups of order 18.
Z18 and D9

2. (16 points) Consider the permutation group S8, and let σ = (13256)(23)(78)(46512).

(a) Express σ as a product of disjoint cycles.
(124)(35)(6)(78)

(b) Express σ as a product of transpositions.
(14)(12)(35)(78)

(c) Give, in disjoint cycle notation, the element σ101.
Since |σ| = 6 and 101 = 6 · 16 + 5, σ101 = σ5 = σ−1 = (142)(35)(6)(78)

3. (16 points) Consider the cyclic group G of order 24 generated by a. (So G = 〈a〉.)

(a) State a necessary and sufficient condition for an element ak to generate G.
gcd(24, k) = 1

(b) State explicitly all generators of G.
a, a5, a7, a11, a13, a17, a19, a23

(c) Use Fundamental Theorem of Cyclic Groups to give the orders of all subgroups of G.
Since G is cyclic, we know k | 24 if and only if G contains a subgraph of order k.
Thus, G contains subgroups of order 1, 2, 3, 4, 6, 8, 12, and 24.
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4. (20 points)

(a) State the definition of a group.
A group is a set G and a binary operation on G such that

i. the operation is closed
(
∀a, b ∈ G, ab ∈ G

)
,

ii. the operation is associative
(
∀a, b, c ∈ G, a(bc) = (ab)c

)
,

iii. there exists an identity element
(
∃e ∈ G, such that ∀g ∈ G ge = eg = g

)
, and

iv. every element has an inverse
(
∀g ∈ G, ∃h ∈ G, such that gh = hg = e

)
.

Note that because the definition of binary operation implies closure, you technically do
not have to include that though I usually do anyway....

(b) Let G be an Abelian group and let H be the subset of elements of finite order from G.
Prove that H ≤ G.

(I will use the two-step subgroup theorem.)

Let G be an Abelian group and let H be the subset of elements of finite order from G.
Since |e| = 1, we know e ∈ H. So H is nonempty. !

Let a, b ∈ H. Then |a| = m and |b| = n for some m,n ∈ Z. Now

(ab)mn = amnbmn since G is Abelian

= (am)n(bn)m properties of exponents

= enem since |a| = m and |b| = n

= e.

Thus |ab| ≤ mn and we know

ab ∈ H.!

Finally, we know that (a−1)m = (am)−1 = e−1 = e. So a ∈ H implies a−1 ∈ H. !

[Observe that this is Example 6 on page 63.]

5. (20 points)

(a) State the definition of a group isomorphism.
Let G and G be groups. The function φ : G→ G is an isomorphism if

i. φ is a bijection, and

ii. φ is operation preserving
(
∀a, b ∈ G, φ(ab) = φ(a)φ(b)

)
.

(b) Let G be a group. Show that φ : G → G defined by φ(g) = g−1 is an isomorphism if
and only if G is Abelian.



Math 405 Abstract Algebra
Test 1

Solutions
Spring 2016
24 February

Proof: (=⇒:) Assume φ(g) = g−1 is an isomorphism. Then for all a, b ∈ G, we know
b−1a−1 = (ab)−1 by Socks and Shoes

= φ(ab) by the definition of φ

= φ(a)φ(b) since φ is order preserving

= a−1b−1 by the definition of φ.

Now, multiply both sides of b−1a−1 = a−1b−1 on the left by ab and on the right by ba,
we obtain, ab(b−1a−1)ba = ab(a−1b−1)ba which simplifies to ab = ba. Since a and b were
arbitrary, we have shown that G is Abelian.

(⇐=:) Assume G is abelian.
(φ is one-to-one) Assume there exist a, b ∈ G such that φ(a) = φ(b). Then by the
definition of φ, a−1 = b−1. Operate on the left by a and the right by b, we obtain b = a.
So φ is one-to-one.
(φ is onto) Let a ∈ G. Then a−1 ∈ G. Now φ(a−1) = a. Thus φ is onto.
(φ is operation preserving) Let a, b ∈ G. Now,

φ(ab) = (ab)−1 by the definition of φ

= b−1a−1 by Socks and Shoes

= a−1b−1 since G is Abelian

= φ(a)φ(b) by the definition of φ.

Thus, we have shown that φ is operation preserving.

6. (10 points) Prove that every group of order 4 is Abelian.

Proof: (by contradiction) Assume a, b ∈ G and ab 6= ba. Then, neither a nor b can be the
identity, which commutes with all elements. Further, a and b are not inverses of each other,
since these too commute. (i.e. aa−1 = a−1a) Thus, ab and ba must be distinct from e, a, b
and each other. So |G| ≥ 5, a contradiction.

Proof: (direct) If G is cyclic, then G is Abelian. So, assume G has order 4 and is not cyclic.
Let a ∈ G− e. Since G is not cyclic, there exists b ∈ G such that b 6∈ 〈a〉. Since G is a group,
ab ∈ G and ba ∈ G. But neither ab nor ba can be elements of 〈a〉 because b 6∈ 〈a〉. Thus we
know G = {e, a, b, ab, ba}. It is now sufficient to show that ba = ab. A case analysis shows
the other possibilities are impossible:

ba = e implies b = a−1 ∈ 〈a〉
ba = a implies b = e ∈ 〈a〉
ba = b implies a = e


