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NAME: Solutions

1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why
such examples do not exist.

NOTE: There are many possible examples. I chose the ones I thought were the easiest or
most obvious.

(a) an infinite non-Abelian group G and a proper, nontrivial, normal subgroup N / G.

SL(2R) / GL(2,R)

(b) a group G and nontrivial subgroup H ≤ G so that |G : H| = 3.

G = Z6, H = 〈3〉

(c) a homomorphism φ : G → G′ of groups that is not an isomorphism. (Indicate G, G′

and φ explicitly.)

φ : Z3 → Z3 defined by φ(x) = 0.

(d) a group G, a subgroup H ≤ G, and an element a ∈ G so that aH 6= Ha (i.e.,the right
and left cosets of H in G are unequal.)

G = S3, H = {(1), (12)}, and a = (123). Then (123)H = {(123), (13)} and H(123) =
{(123), (23)}.

(e) a non-trivial group homomorphism φ : Z12 → Z5.

Only the trivial homomorphism is possible. For any homomorphism φ : Z12 → Z5,
|φ(Z12)| must divide |Z5| = 5 and |Z12| = 12. So |φ(Z12)| = gcd(5, 12) = 1.

2. (5 points) List all cosets of 〈5〉 in Z.

〈5〉, 1 + 〈5〉, 2 + 〈5〉, 3 + 〈5〉, 4 = 〈5〉
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3. (10 points) Use the Fundamental Theorem of Finite Abelian Groups to list, up to isomor-
phism, all Abelian groups of order 756 = 22 · 33 · 7. You do not need to justify your answer
here; simply give a complete list without repetitions.
Z4 ⊕ Z27 ⊕ Z7

Z2 ⊕ Z2 ⊕ Z27 ⊕ Z7

Z4 ⊕ Z9 ⊕ Z3 ⊕ Z7

Z2 ⊕ Z2 ⊕ Z9 ⊕ Z3 ⊕ Z7

Z4 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z7

Z2 ⊕ Z2 ⊕ Z3 ⊕ Z3 ⊕ Z3 ⊕ Z7

4. (15 points )

(a) Give the definition of a group homomorphism φ : G→ H.
A mapping, φ, from group G to group H is a group homomorphism if φ is operation
preserving. That is, if for every a, b ∈ G, φ(ab) = φ(a)φ(b).

(b) Let φ : G → H be a group homomorphism of finite groups that is onto. Prove that if
H has an element of order 8, then G has an element of order 8.

[Note that the proof below can be shortened by referencing familiar theorems and corol-
laries.]

Let φ : G → H be a group homomorphism of finite groups that is onto and let h ∈ H
of order 8. Since φ is onto, we know there exists an element g ∈ G such that φ(g) = h.
Since G is finite, |g| must be finite, say |g| = n.
Because φ is a homomorphism, e = φ(e) = φ(gn) = (φ(g))n = hn. Thus, 8 | n.
Now we claim that since n = 8k, the element gk has order 8. This follows because we
see that if the order of gk were some integer m < 8, (gk)m = e, contradicting the order
of g.

Why is finiteness necessary here? A counterexample is the efficient and unequivocal
way to go.

Let φ : Z→ Z8.

5. (20 points) Let Z and Q be the usual groups under the operation of addition.

(a) Explain why it is immediate that Z /Q.
Q is Abelian so all subgroups are normal subgroups.

(b) Describe briefly the elements in the factor group Q/Z under addition and give a specific,
nontrivial example of an element in Q/Z.
Elements of the factor group are cosets of the subgroup Z.
One example: 1

2
+ Z = {· · · − 1/2, 1/2, 3/2, 5/2, · · · }
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(c) Prove that Q/Z is infinite.
It is sufficient to describe an infinite family of cosets. In particular, I do not need to
characterize all cosets, though some people did.

I claim the family {1
2

+Z, 1
4

+Z, 1
8

+Z, 1
16

+Z, · · · } is an infinite set of distinct cosets
of Q/Z.

Assume 1
2k1

+ Z = 1
2k2

+ Z where k1 ≤ k2. Then there exist n,m ∈ Z such that
1

2k1
+ n = 1

2k2
+ m or, equivalently, n − m = 1

2k2
− 1

2k1
. Since 1 > 1

2k2
− 1

2k1
≥ 0 and

n−m ∈ Z, k1 = k2. So indeed all the cosets in my infinite list are distinct.

(d) Prove that every element of Q/Z has finite order.

Let r ∈ Q, so r = a
b
. I claim |a

b
+ Z| ≤ b.

Observe that b · (a
b

+ Z) = (b · a
b
) + Z = a+ Z = Z, the identity in Q/Z.

6. (a) State Lagrange’s Theorem.

Let H be a subgroup of the finite group G. Then |H| | |G|. Further, |G : H| = |G|/|H|.

(b) Use Lagrange’s Theorem to prove that all groups of order p, where p is a prime, are
cyclic.

Let G be a group of order p and let a ∈ G− e. We know 〈a〉 ≤ G. Thus, by Lagrange’s
Theorem, |〈a〉| | |G|. Thus, |〈a〉| | p. Since a 6= e, |〈a〉| ≥ 2. Since p is prime, |〈a〉| = p.
But this implies 〈a〉 = G forcing G to be cyclic.

7. (10 points) Let G be a finite group and let p be a prime. If p2 > |G|, prove that any subgroup
of order p is normal in G.

Let G be a finite group with order less than p2, where p is a prime. Let H ≤ G of order p.
We claim that H is unique.
If there exists K ≤ G of order p and K 6= H, then K ∩ H = e. Thus, applying the HK
Theorem, we get the contradiction:

p2 > |G| ≥ |HK| = |H| · |K|/|H ∩K| = |H| · |K| = p2.

Because H is unique, we know that for every x ∈ G, xHx−1 = H because φx defined as
φx(g) = xgx−1 is an isomorphism and as such will map a subgroup of order p to a subgroup
of order p.

Since xHx−1 = H for every x ∈ G, we have shown that H / G.


