NAME: Solutions

1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.

NOTE: There are many possible examples. I chose the ones I thought were the easiest or most obvious.

(a) an infinite non-Abelian group G and a proper, nontrivial, normal subgroup $N \triangleleft G$.

 $SL(2\mathbb{R}) \triangleleft GL(2,\mathbb{R})$

(b) a group G and nontrivial subgroup $H \leq G$ so that |G:H| = 3.

 $G = \mathbb{Z}_6, \ H = \langle 3 \rangle$

(c) a homomorphism $\phi: G \to G'$ of groups that is not an isomorphism. (Indicate G, G' and ϕ explicitly.)

 $\phi : \mathbb{Z}_3 \to \mathbb{Z}_3$ defined by $\phi(x) = 0$.

(d) a group G, a subgroup $H \leq G$, and an element $a \in G$ so that $aH \neq Ha$ (i.e.,the right and left cosets of H in G are unequal.)

 $G = S_3, H = \{(1), (12)\}, \text{ and } a = (123).$ Then $(123)H = \{(123), (13)\}$ and $H(123) = \{(123), (23)\}.$

(e) a non-trivial group homomorphism $\phi: Z_{12} \to Z_5$.

Only the trivial homomorphism is possible. For any homomorphism $\phi : Z_{12} \to Z_5$, $|\phi(\mathbb{Z}_{12})|$ must divide $|\mathbb{Z}_5| = 5$ and $|\mathbb{Z}_{12}| = 12$. So $|\phi(\mathbb{Z}_{12})| = \gcd(5, 12) = 1$.

- 2. (5 points) List all cosets of $\langle 5 \rangle$ in \mathbb{Z} .
 - $\langle 5 \rangle, 1 + \langle 5 \rangle, 2 + \langle 5 \rangle, 3 + \langle 5 \rangle, 4 = \langle 5 \rangle$

 $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{27} \oplus \mathbb{Z}_{7}$ $\mathbb{Z}_{4} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{9} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$ $\mathbb{Z}_{4} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$ $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{3} \oplus \mathbb{Z}_{7}$

4. (15 points)

- (a) Give the definition of a group homomorphism $\phi : G \to H$. A mapping, ϕ , from group G to group H is a group homomorphism if ϕ is operation preserving. That is, if for every $a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$.
- (b) Let $\phi: G \to H$ be a group homomorphism of finite groups that is onto. Prove that if H has an element of order 8, then G has an element of order 8.

[Note that the proof below can be shortened by referencing familiar theorems and corollaries.]

Let $\phi: G \to H$ be a group homomorphism of finite groups that is onto and let $h \in H$ of order 8. Since ϕ is onto, we know there exists an element $g \in G$ such that $\phi(g) = h$. Since G is finite, |g| must be finite, say |g| = n.

Because ϕ is a homomorphism, $e = \phi(e) = \phi(g^n) = (\phi(g))^n = h^n$. Thus, $8 \mid n$.

Now we claim that since n = 8k, the element g^k has order 8. This follows because we see that if the order of g^k were some integer m < 8, $(g^k)^m = e$, contradicting the order of g.

Why is finiteness necessary here? A counterexample is the efficient and unequivocal way to go.

Let $\phi : \mathbb{Z} \to \mathbb{Z}_8$.

- 5. (20 points) Let \mathbb{Z} and \mathbb{Q} be the usual groups under the operation of addition.
 - (a) Explain why it is immediate that $\mathbb{Z} \triangleleft \mathbb{Q}$. \mathbb{Q} is Abelian so all subgroups are normal subgroups.
 - (b) Describe briefly the elements in the factor group Q/Z under addition and give a specific, nontrivial example of an element in Q/Z. Elements of the factor group are cosets of the subgroup Z. One example: ¹/₂ + Z = {··· − 1/2, 1/2, 3/2, 5/2, ··· }

(c) Prove that \mathbb{Q}/\mathbb{Z} is infinite.

It is sufficient to describe an infinite family of cosets. In particular, I do not need to *characterize* all cosets, though some people did.

I claim the family $\{\frac{1}{2} + \mathbb{Z}, \frac{1}{4} + \mathbb{Z}, \frac{1}{8} + \mathbb{Z}, \frac{1}{16} + \mathbb{Z}, \cdots\}$ is an infinite set of *distinct* cosets of \mathbb{Q}/\mathbb{Z} .

Assume $\frac{1}{2^{k_1}} + \mathbb{Z} = \frac{1}{2^{k_2}} + \mathbb{Z}$ where $k_1 \leq k_2$. Then there exist $n, m \in \mathbb{Z}$ such that $\frac{1}{2^{k_1}} + n = \frac{1}{2^{k_2}} + m$ or, equivalently, $n - m = \frac{1}{2^{k_2}} - \frac{1}{2^{k_1}}$. Since $1 > \frac{1}{2^{k_2}} - \frac{1}{2^{k_1}} \geq 0$ and $n - m \in \mathbb{Z}$, $k_1 = k_2$. So indeed all the cosets in my infinite list are distinct.

(d) Prove that every element of \mathbb{Q}/\mathbb{Z} has finite order.

Let $r \in \mathbb{Q}$, so $r = \frac{a}{b}$. I claim $|\frac{a}{b} + \mathbb{Z}| \leq b$.

Observe that $b \cdot \left(\frac{a}{b} + \mathbb{Z}\right) = \left(b \cdot \frac{a}{b}\right) + \mathbb{Z} = a + \mathbb{Z} = \mathbb{Z}$, the identity in \mathbb{Q}/\mathbb{Z} .

6. (a) State Lagrange's Theorem.

Let H be a subgroup of the finite group G. Then $|H| \mid |G|$. Further, |G:H| = |G|/|H|.

(b) Use Lagrange's Theorem to prove that all groups of order p, where p is a prime, are cyclic.

Let G be a group of order p and let $a \in G - e$. We know $\langle a \rangle \leq G$. Thus, by Lagrange's Theorem, $|\langle a \rangle| \mid |G|$. Thus, $|\langle a \rangle| \mid p$. Since $a \neq e$, $|\langle a \rangle| \geq 2$. Since p is prime, $|\langle a \rangle| = p$. But this implies $\langle a \rangle = G$ forcing G to be cyclic.

7. (10 points) Let G be a finite group and let p be a prime. If $p^2 > |G|$, prove that any subgroup of order p is normal in G.

Let G be a finite group with order less than p^2 , where p is a prime. Let $H \leq G$ of order p. We claim that H is unique.

If there exists $K \leq G$ of order p and $K \neq H$, then $K \cap H = e$. Thus, applying the HK Theorem, we get the contradiction:

$$p^2 > |G| \ge |HK| = |H| \cdot |K|/|H \cap K| = |H| \cdot |K| = p^2.$$

Because H is unique, we know that for every $x \in G$, $xHx^{-1} = H$ because ϕ_x defined as $\phi_x(g) = xgx^{-1}$ is an isomorphism and as such will map a subgroup of order p to a subgroup of order p.

Since $xHx^{-1} = H$ for every $x \in G$, we have shown that $H \triangleleft G$.