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NAME: Solutions

1. (3 points each) Give examples of the following, if they exist. Otherwise briefly explain why
such examples do not exist.

NOTE: There are many possible examples. I chose the ones I thought were the easiest or
most obvious.

(a) an infinite non-Abelian group G and a proper, nontrivial, normal subgroup N < G.
SL(2R) <« GL(2,R)

(b) a group G and nontrivial subgroup H < G so that |G : H| = 3.
G =Z¢, H=(3)

(¢) a homomorphism ¢ : G — G’ of groups that is not an isomorphism. (Indicate G, G’
and ¢ explicitly.)

¢ : Ly — Zsz defined by ¢(x) = 0.

(d) a group G, a subgroup H < GG, and an element a € G so that aH # Ha (i.e.,the right
and left cosets of H in G are unequal.)

G =83, H=1{(1),(12)}, and a = (123). Then (123)H = {(123), (13)} and H(123) =
{(123), (23)}.

(e) a non-trivial group homomorphism ¢ : Z15 — Zs.

Only the trivial homomorphism is possible. For any homomorphism ¢ : Z;5 — Zs,
|¢(Zlg)| must divide |Z5| =5 and |Zlg| =12. So |¢(Zlg)| = ng(5, 12) =1.

2. (5 points) List all cosets of (5) in Z.

(5), 1+ (5), 24 (5), 3+ (5), 4 = ()
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3. (10 points) Use the Fundamental Theorem of Finite Abelian Groups to list, up to isomor-
phism, all Abelian groups of order 756 = 22 - 3% - 7. You do not need to justify your answer
here; simply give a complete list without repetitions.

Ly ® g7 ® L

Ly ® Ly ® Loy D Lq

Ly ® Ly ® L3 ® L

Loy ® Ly ® g ® L3 D 2y

Lo ® Loy ® L3 ® L3 D L3 D L

4. (15 points )

(a) Give the definition of a group homomorphism ¢ : G — H.
A mapping, ¢, from group G to group H is a group homomorphism if ¢ is operation
preserving. That is, if for every a,b € G, ¢(ab) = ¢(a)p(b).

(b) Let ¢ : G — H be a group homomorphism of finite groups that is onto. Prove that if
H has an element of order 8, then GG has an element of order 8.

[Note that the proof below can be shortened by referencing familiar theorems and corol-
laries.]

Let ¢ : G — H be a group homomorphism of finite groups that is onto and let h € H
of order 8. Since ¢ is onto, we know there exists an element g € G such that ¢(g) = h.
Since G is finite, |g| must be finite, say |g| = n.

Because ¢ is a homomorphism, e = ¢(e) = ¢(g") = (¢(g))" = h™. Thus, 8 | n.

Now we claim that since n = 8k, the element g* has order 8. This follows because we
see that if the order of ¢* were some integer m < 8, (¢*)™ = e, contradicting the order
of g.

Why is finiteness necessary here? A counterexample is the efficient and unequivocal
way to go.

Let ¢ : Z — Zs.

5. (20 points) Let Z and Q be the usual groups under the operation of addition.

(a) Explain why it is immediate that Z < Q.
Q is Abelian so all subgroups are normal subgroups.

(b) Describe briefly the elements in the factor group Q/Z under addition and give a specific,
nontrivial example of an element in Q/Z.
Elements of the factor group are cosets of the subgroup Z.
One example: § +Z = {---—1/2,1/2,3/2,5/2,---}
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Prove that Q/Z is infinite.
It is sufficient to describe an infinite family of cosets. In particular, I do not need to
characterize all cosets, though some people did.

I claim the family {% +2Z, % +7Z, % +7Z, % +Z, ---} is an infinite set of distinct cosets
of Q/Z.

Assume - 4+ Z = -~ + 7Z where k; < ky. Then there exist n,m € Z such that

ok 2k
2%1—1-71:2%2—1—77101", equivalently,n—m:%—%. Since 1 > 2%2—2%120and

n—m € Z, ki = ky. So indeed all the cosets in my infinite list are distinct.

Prove that every element of Q/Z has finite order.
Let r € Q,sor = ¢. I claim |§ +Z| < b.

Observe that b- (¢ +Z) = (b- §) + Z = a + Z = Z, the identity in Q/Z.

State Lagrange’s Theorem.

Let H be a subgroup of the finite group G. Then |H| | |G|. Further, |G : H| = |G|/|H]|.

Use Lagrange’s Theorem to prove that all groups of order p, where p is a prime, are
cyclic.

Let G be a group of order p and let a € G —e. We know (a) < G. Thus, by Lagrange’s
Theorem, |{a)| | |G|. Thus, |{(a)| | p. Since a # e, |{a)| > 2. Since p is prime, |(a)| = p.
But this implies (a) = G forcing G to be cyclic.

7. (10 points) Let G be a finite group and let p be a prime. If p? > |G/, prove that any subgroup
of order p is normal in G.

Let G be a finite group with order less than p?, where p is a prime. Let H < G of order p.
We claim that H is unique.

If there exists K < G of order p and K # H, then K N H = e. Thus, applying the HK
Theorem, we get the contradiction:

P> |G| = [HK| = |H|-|K|/|H N K| =|H| - |K|=p".

Because H is unique, we know that for every x € G, xtHx~' = H because ¢, defined as

be(g) = vga~

!'is an isomorphism and as such will map a subgroup of order p to a subgroup

of order p.

Since xHx~! = H for every z € G, we have shown that H < G.



