Solutions

- 1. Let G and H be groups and let $\phi: G \to H$ be a group homomorphism.
 - (a) (2 pts) State the definition of a **group homomorphism**.

A function $\phi: G \to H$ is a group homomorphism if $\forall a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$. (or, if you prefer, $\phi(a+b) = \phi(a) + \phi(b)$.

(b) (2 pts) State the definition of the **kernel of** ϕ , ker ϕ .

Given a group homomorphism $\phi: G \to H$, the **kernel of** ϕ , ker ϕ , is $\phi^{-1}(0_H)$ or the inverse image of the identity in H or the set of elements in G whose image is the identity in H.

(c) (8 pts) Prove ker ϕ is a normal subgroup of G. (Note that you must show ker ϕ is a subgroup of G and that it is normal.)

Proof: (ker ϕ is a subgroup of G.)

We know that all group homomorphisms send the identity in the domain to the identity in the range. So $e_G \in \ker \phi$ which implies $\ker \phi \neq \emptyset$.

Let $a, b \in \ker \phi$. Observe

$$\phi(ab^{-1}) = \phi(a)\phi(b^{-1})$$
 b/c ϕ respects the group operation $= \phi(a)(\phi(b))^{-1}$ by Prop 11.4 $= e_H \cdot (e_H)^{-1}$ b/c $a,b \in \ker \phi$ $= e_H$ b/c e_H is the identity.

Thus, we have shown that $ab^{-1} \in \ker \phi$. Thus, by Proposition 3.31, the kernel of ϕ is a subgroup of G.

(ker ϕ is normal G.)

By Theorem 10.3, it is sufficient to demonstrate that $gag^{-1} \in \ker \phi$, for every $g \in G$ and $a \in \ker \phi$. Observe

$$\begin{array}{ll} \phi(gag^{-1}) &= \phi(g)\phi(a)\phi(g^{-1}) & \text{b/c } \phi \text{ respects the group operation} \\ &= \phi(g)e_H\phi(g^{-1}) & \text{b/c } a \in \text{ker} \phi \\ &= \phi(g)\phi(g)^{-1} & \text{by Prop } 11.4 \\ &= e_H. \end{array}$$

Thus, we have shown that $gag^{-1} \in \ker \phi$.

- 2. (18 points) Give an examples of the following, if they exist. Otherwise, briefly explain why such examples do not exist.
 - (a) An infinite nonabelian group.

 $GL_2(\mathbb{R})$

- (b) A nonabelian group of order n = 11. none exist. All groups of prime order are cyclic and therefore abelian.
- (c) An infinite group G with multiple elements of finite order.

$$G = Z_6 \times Z$$

(d) Three nonisomorphic groups of order 12.

$$D_6$$
, $\mathbb{Z}_4 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$

(e) A commutative ring with unity that is not an integral domain.

 \mathbb{Z}_6

- (f) A ring R and an ideal I such that I is prime. $R=\mathbb{Z}$ and $I=2\mathbb{Z}$
- (g) A ring R and an ideal I that is maximal in R. $R = \mathbb{Z}$ and $I = 2\mathbb{Z}$
- (h) A ring R such that R[x] contains a unit of degree at least 1. $R = \mathbb{Z}_4$ and 2x + 1 (It is its own inverse.)
- 3. (12 points) Let G be an abelian group. Let $H = \{a \in G : |a| < \infty\}$. (That is, H consists of all elements of G of finite order.)

Prove that H is a subgroup of G.

Proof: Let e_G be the identity of G. Since $|e_G|=1$, we know that $e_G\in H$. Thus, $H\neq\emptyset$. Let $a,b\in H$. Thus, we know that |a|=m and |b|=n for some $m,n\in\mathbb{Z}^+$. Thus, $|a^{-1}|=n$. Since G is abelian, $(ab^{-1})^{mn}=a^{mn}b^{-mn}=e^m_Ge^n_G=e_G$. Thus, $ab^{-1}\in H$. Thus, $H\leq G$.

- 4. (a) (4 points) State Lagrange's Theorem Let G be a finite group and let H be a subgroup of G. Then [G:H]=|G|/|H| and, thus, $|H|\,|\,|G|$.
 - (b) (10 points) Let G be a group of order pq where p and q are both primes. Prove that every proper subgroup of G is cyclic.

Proof: Let G be a group of order pq where p and q are both primes. Let $H \leq G$ and $H \neq G$. By Lagrange's Theorem, $|H| \mid |G|$. So $|H| \in \{1, p, q\}$. If |H| = 1, then $H = \langle e \rangle$. If H has prime order then since groups of prime order are cyclic, H is cyclic.

5. Let R be the ring of functions $f: \mathbb{R} \to \mathbb{R}$ with the usual operations of addition and multiplication. Let S be the set of differentiable functions in R. (Note: All the functions in R, and therefore S, have domain \mathbb{R} .)

(a) (10 points) Prove that S is a subring of R.

Proof: Since f(x) = 1 is differentiable, S is not empty. Let $f, g \in S$. Since g is differentiable, so is -g. Since the sum of two differentiable functions is differentiable, we know $f - g \in S$. Since the product of two differentiable functions is differentiable, we know $fg \in S$.

(b) (4 points) Prove that S is **not** an ideal of R.

Proof: We know f(x) = 1 is in S and g(x) = |x| is not in S. Since fg = |x|, we see that S fails the absorption requirement of an ideal.

- 6. Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} : a,b,c \in \mathbb{Z} \right\}$. Consider the function $\phi : R \to \mathbb{Z}$ defined by $\phi \left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \right) = a$.
 - (a) (10 points) Prove that ϕ is a ring homomorphism.

Proof: (respects addition)

Let
$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}, \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix} \in \mathbb{M}_2(\mathbb{Z})$$
. Observe

$$\phi\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} + \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right) = \phi\left(\begin{bmatrix} a+a' & b+b' \\ 0 & c+c' \end{bmatrix}\right) = a+a' = \phi\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right) + \phi\left(\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right).$$

(respects multiplication)

Observe

$$\phi\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right) = \phi\left(\begin{bmatrix} aa' & bc' + ab' \\ 0 & cc' \end{bmatrix}\right) = aa' = \phi\left(\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}\right)\phi\left(\begin{bmatrix} a' & b' \\ 0 & c' \end{bmatrix}\right).$$

(b) (4 points) Determine the kernel of ϕ .

$$\mathsf{ker} \phi = \left\{ \begin{bmatrix} 0 & b \\ 0 & c \end{bmatrix} \,\middle|\, b,c \in \mathbb{Z} \right\}.$$

- 7. (4 points each) Short Answer
 - (a) What is the order of the factor group $\mathbb{Z}_{60}/\langle 15\rangle ?$ 15
 - (b) What is the order of the element $10+\langle 15\rangle$ in the factor group $\mathbb{Z}_{60}/\langle 15\rangle$?
 - (c) Is $2x^4+1$ an element of $\langle x^2+2\rangle$, the ideal generated by x^2+2 in $\mathbb{Z}_3[x]$? Justify your answer. **Answer:** Yes. $2x^4+1\in\langle x^2+2\rangle$ because $(x^2+2)(2x^2+2)=2x^4+6x^2+4=2x^4+1$.
 - (d) Show that the map f(x) = 5x is **not** a ring homomorphism from \mathbb{Z}_{12} to \mathbb{Z}_{60} . **Answer:** f(1) = 5. However, $5 = f(1 \cdot 1) \neq f(1)f(1) = 25$.

5 pts Extra Credit: Suppose f(x) is irreducible in F[x], where F is a field. Prove that for every nonzero polynomial $g(x) \in F[x]$, either gcd(f(x), g(x)) = 1 or f(x) | g(x).

Proof: Suppose f(x) is irreducible in F[x], where F is a field. Thus, by the definition of **irreducible**, $\deg(f(x)) \geq 1$. Let g(x) be a nonzero polynomial in F[x] and let $h(x) = \gcd(f(x), g(x))$. If h(x) = 1, the result holds.

So, suppose $\deg(h(x)) \geq 1$. From the definition of a greatest common divisor, it follows that $f(x) = h(x) \cdot k(x)$ and $g(x) = h(x)\ell(x)$ for some $k(x), \ell(x) \in F[x]$. Since f(x) is irreducible and $\deg(h(x)) \geq 1$, it must be the case that $\deg(h(x)) = \deg(f(x))$ and k(x) is a unit. Since k(x) is a unit, F[x] contains a multiplicative inverse for k(x), say $(k(x))^{-1}$. Thus, $h(x) = f(x)(k(x))^{-1}$.

Now, we can replace h(x) in the equation $g(x) = h(x)\ell(x)$ to obtain the equation $g(x) = f(x)(k(x))^{-1}\ell(x)$ which demonstrates that f(x) divides g(x).