1. (10 points) (HW 4 Problem 4)Let H and K be subgroups of the group G. Recall that $HK = \{hk : h \in H \text{ and } k \in K\}$. Prove that if G is abelian, then $HK \leq G$.

Answer: Let *H* and *K* be subgroups of the abelian group *G*. Let $HK = \{hk : h \in H \text{ and } k \in K\}$. (Show *HK* is closed.) Let $h_1k_1, h_2k_2 \in HK$. Since *G* is abelian, $h_1k_1h_2k_2 = h_1h_2k_1k_2 = h_3k_3$, where $h_3 \in H$ and $k_3 \in K$. Thus, $h_1k_1h_2k_2 \in HK$. (Show $e \in HK$.) Since *H* and *K* are subgroups, $e \in H$ and $e \in K$. Thus, $e = ee \in HK$. (Show *HK* contains inverses.) Let $hk \in HK$ where $h \in H$ and $k \in K$. Since *H* and *K* are subgroups, $h^{-1} \in H$ and $k^{-1} \in K$. Thus, $h^{-1}k^{-1} = HK$. Since *G* is abelian and using our knowledge of inverses, we know that $h^{-1}k^{-1} = k^{-1}h^{-1} = (hk)^{-1}$. Thus, $(hk)^{-1} \in S$.

Since we have shown that HK is closed, contains the identity and inverses, HK is a subgroup.

- 2. (16 points) Give an examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.
 - (a) a noncyclic group of order 13

None exists since all groups of prime order are cyclic.

(b) an infinite group G and element $g \in G$, such that |g| is finite In retrospect, I should have added the word **nontrivial** element g.

 $G = \mathbb{Z}_2 \times \mathbb{Z}$ and element (1,0).

(c) two nonisomorphic groups of order 18

many examples here: D_9 or \mathbb{Z}_{18} or $\mathbb{Z}_3 \times \mathbb{Z}_3 \times \mathbb{Z}_2$

(d) a nonabelian group G and a subgroup H of G such that $H \triangleleft G$

many examples here but the easiest is $G = S_n$ and $H = A_n$

- 3. (20 points)
 - (a) Suppose that H is a subgroup of the group G. Define the **index** of H in G.

The index of H in G is the number of left (or right) cosets of H.

(b) Give an example of a group G and a **nontrivial** subgroup H such that the index of H in G is 50.

Let $G = \mathbb{Z}_{100}$ and $H = \{1, 50\}$.

(c) (HW 5 Problem 7) Let H be a subgroup of the group G. Prove that if [G:H] = 2, then for every $a, b \in G \setminus H$, $ab \in H$.

Proof: Let *H* be a subgroup of the group *G* of index 2. Let $a, b \in G \setminus H$. Since $a \notin H$, it follows that $a^{-1} \notin H$. Since $a^{-1}, b \notin H$, we know $a^{-1}H \neq H$ and $bH \neq H$. Since [G:H] = 2, $a^{-1}H = bH$. By Lemma 6.3, we know that if $a^{-1}H = bH$, then $(a^{-1})^{-1}b = ab \in H$.

4. (15 points) ((HW 6 Problem 9) Let G be a group and $g \in G$. Define the function $f_g(x) : G \to G$ by $f_g(x) = gxg^{-1}$. Prove that f_g is an isomorphism from G to itself.

Proof:

(Show f_g is 1-1.) Let $x, y \in G$ such that $f_g(x) = f_g(y)$. Then by the definition of f_g , $gxg^{-1} = gyg^{-1}$. Using left and right cancellation, we obtain x = y.

(Show f_g is onto.) Let $y \in G$. Pick $x = g^{-1}yg \in G$. Then $f_g(x) = f_g(g^{-1}yg) = gg^{-1}ygg^{-1} = y$.

(Show f_g respects op.) Let $x, y \in G$. Observe

f(xy)	$=gxyg^{-1}$	by the definition of G
	$= g x e y g^{-1}$	by the definition of <i>e</i>
	$=gxg^{-1}gyg^{-1}$	since $e = g^{-1}g$
	= f(x)f(y)	by the definition of f .

- 5. (12 points)
 - (a) State Lagrange's Theorem

Suppose that H is a subgroup of the group G. Then,

•
$$[G:H] = \frac{|G|}{|H|}$$
 and
• $|H| ||G|$

(b) Suppose K is a proper subgroup of H and H is a proper subgroup of G. (So K < H < G.) If |K| = 10 and |G| = 200, what are the possible orders of H? (Or, what are the possible values for |H|?) Explain your reasoning.

Since $K \le H$ and |K| = 10, Lagrange's Theorem implies that |H| = 10n for some integer n. Since K is a **proper** subgroup, $n \ge 2$. Since H is a subgroup of G and |G| = 200, Lagrange's Theorem implies that |H| ||G| or, equivalently, 10n|200. Since H is a **proper** subgroup of G, we conclude that n < 20.

Using the fact that $200 = 2^3 5^2 = 10 \cdot 2^2 \cdot 5$, we conclude the possible values of *n* are: 2,4,5, and 10. So, the possible values of |H| are 20, 40, 50, and 100.

- 6. (12 points)
 - (a) State the definition of a **normal subgroup**.

The subgroup H of G is called **normal** if for every $g \in G$, gH = Hg.

(b) Let $G = GL_2(\mathbb{R})$ and let $H = \{A \in GL_2(\mathbb{R}) : \det(A) = 2^k \text{ for } k \in \mathbb{Z}\}$ be a subgroup of G. Prove that $H \triangleleft G$.

Note: You do not need to prove that H is a subgroup of G. You only need to prove that H is normal in G.

Proof: Let $G = GL_2(\mathbb{R})$ and let $H = \{A \in GL_2(\mathbb{R}) : \det(A) = 2^k \text{ for } k \in \mathbb{Z}\}$. By Theorem 10.3, we know that $H \lhd G$ if and only if $ghg^{-1} \in H$ for every $g \in G$ and every $h \in H$.

Let $B \in GL_2(\mathbb{R})$ and $A \in H$. We need to show that $BAB^{-1} \in H$. Using properties of the determinant, we know that

$$det(BAB^{-1}) = det(B)det(A)det(B^{-1}) = det(B)det(B^{-1})det(A) = 1 \cdot det(A).$$

But $det(A) = 2^k$ for some integer k, since $A \in H$. Thus, $det(BAB^{-1}) = 2^k$ for some integer k. Thus, $BAB^{-1} \in H$. Thus, $H \lhd G$.

- 7. (15 points) Let $G = \mathbb{Z}_{24}$ and $H = \langle 8 \rangle$.
 - (a) In one or two sentences, explain why $H \lhd G$.

G is abelian so all subgroups of G are normal.

(b) List the distinct elements of G/H.

0+H, 1+H, 2+H, 3+H, 4+H, 5+H, 6+H, 7+H

(c) For cosets 10+H and 20+H, determine (10+H)+(20+H)

30 + H = 6 + H

(d) Determine the order of the element 10 + H in G/H.

Since 10 + H = 2 + H, we can see that $4 \cdot (2 + H) = 0 + H$ and 4 is the smallest such value. So |2 + H| = 4.

(e) Can G/H have an element of order 5? If so, find such an element. If not, explain why it is not possible.

Answer: No. **Reasoning:** Since the order of G/H is 8, the order of every element must divide 8.

Extra Credit: (5 points) Suppose that *H* and *K* are subgroups of the group *G*. Prove that if there exist elements $a, b \in G$ such that $aH \subseteq bK$, then $H \subseteq K$.

Proof: Suppose that *H* and *K* are subgroups of the group *G*. Suppose there exist elements $a, b \in G$ such that $aH \subseteq bK$.

Let $h \in H$. We need to show that $h \in K$.

Since $a = ae \in aH$ and $aH \subseteq bK$, we know there exists some $k \in K$ such that a = bk and, consequently, $a^{-1} = k^{-1}b^{-1}$.

Since $h \in H$ and $aH \subseteq bK$, we know there exists some $k' \in K$ such that ah = bk'. Operating on the left by a^{-1} , we conclude

$$h = a^{-1}bk' = k^{-1}b^{-1}bk' = k^{-1}k'.$$

Since K is a group, $k^{-1}k'$ is in K. Thus, $h \in K$.