Solutions

- 1. Let G and H be groups and let $\phi : G \to H$ be a group homomorphism.
 - (a) (2 pts) State the definition of a group homomorphism.

A function $\phi: G \to H$ is a group homomorphism if $\forall a, b \in G$, $\phi(ab) = \phi(a)\phi(b)$. (or, if you prefer, $\phi(a+b) = \phi(a) + \phi(b)$.

(b) (2 pts) State the definition of the **kernel of** ϕ , ker ϕ .

Given a group homomorphism $\phi: G \to H$, the **kernel of** ϕ , ker ϕ , is $\phi^{-1}(0_H)$ or the inverse image of the identity in H or the set of elements in G whose image is the identity in H.

(c) (12 pts) Prove ker ϕ is a normal subgroup of G. (Note that you must show ker ϕ is a subgroup of G and that it is normal.)

Proof: (ker ϕ is a subgroup of *G*.)

We know that all group homomorphisms send the identity in the domain to the identity in the range. So $e_G \in \ker \phi$ which implies $\ker \phi \neq \emptyset$.

Let $a, b \in ker \phi$. Observe

$\phi(ab^{-1})$	$= \phi(a)\phi(b^{-1})$	$b/c \phi$ respects the group operation
	$= \phi(a)(\phi(b))^{-1}$	by Prop 11.4
	$= e_H \cdot (e_H)^{-1}$	$b/c\;a,b\inker\phi$
	$= e_H$	$b/c e_H$ is the identity.

Thus, we have shown that $ab^{-1} \in \ker \phi$. Thus, by Proposition 3.31, the kernel of ϕ is a subgroup of G.

(ker ϕ is normal G.)

By Theorem 10.3, it is sufficient to demonstrate that $gag^{-1} \in \ker \phi$, for every $g \in G$ and $a \in \ker \phi$. Observe

 $\begin{aligned} \phi(gag^{-1}) &= \phi(g)\phi(a)\phi(g^{-1}) & \text{b/c } \phi \text{ respects the group operation} \\ &= \phi(g)e_H\phi(g^{-1}) & \text{b/c } a \in \text{ker}\phi \\ &= \phi(g)\phi(g)^{-1} & \text{by Prop 11.4} \\ &= e_H. \end{aligned}$

Thus, we have shown that $gag^{-1} \in \ker \phi$.

- 2. (20 points) Give an examples of the following, if they exist. Otherwise briefly explain why such examples do not exist.
 - (a) A commutative ring with unity that is not an integral domain.

 \mathbb{Z}_6 (Note any \mathbb{Z}_n where *n* is composite would suffice.)

(b) A ring that is an integral domain but is not a field.

 \mathbb{Z} or $\mathbb{R}[x]$

(c) A ring R and a nontrivial subring I such that I is an ideal of R

 $\mathit{R} = \mathbb{Z}$ and $\mathit{I} = 6\mathbb{Z}$

(d) A ring R and a nontrivial subring S such that S is **not** an ideal of R

 $R = \mathbb{Z}[x]$ and $S = \mathbb{Z}$ or $R = \mathbb{R}$ and $S = \mathbb{Z}$

(e) A ring R and an ideal I that is prime.

 $R = \mathbb{Z}$ and $I = 2\mathbb{Z}$

- 3. (16 points)
 - (a) (4 pts) State the First Isomorphism Theorem (for groups) Let $f: G \to H$ be a group homomorphism with kernel K. Let $g: G \to G/K$ be the canonical homomorphism. Then there is a unique isomorphism $h: G/K \to f(G)$ such that $f = h \circ g$.
 - (b) (12 pts) Let $\psi: G \to H$ be a group homomorphism. Prove that ψ is one-to-one if and only if $\psi^{-1}(e_H) = \{e_G\}$.

Proof: (\Longrightarrow :) Suppose that ψ is one-to-one. Since ψ is a homomorphism, $\psi(e_G) = e_H$. Since ψ is one-to-one, ψ can map no other element of G to e_H . Thus, $\phi^{-1}(e_H) = \{e_G\}$.

(\Leftarrow :) Suppose $\psi^{-1}(e_H) = \{e_G\}$. Thus, by the definition of kernel, $\ker \psi = \{e_G\}$. Since $\ker \psi = \{e_G\}$, it follows that $G \cong G/(\ker \psi)$. The First Isomorphism Theorem states that $G/(\ker \psi) \cong \psi(G)$. Thus, $G \cong \psi(G)$. Thus, ψ must be one-to-one.

4. (12 points) Prove that if R is a field, the only ideals of R are $\{0\}$ and R itself.

Proof: Let *R* be a field and let *I* be an ideal in *R* such that $I \neq \{0\}$. Since $I \neq \{0\}$, it follows that there exists some $r \in R \setminus \{0\}$ such that $r \in I$. Since *R* is a field and $r \neq 0$, there exists a multiplicative inverse, r^{-1} , in *R*. Since *I* is an ideal, $r^{-1}r = 1 \in I$. Since $1 \in I$, for every $a \in R$, $a = a \cdot 1 \in I$. Thus, I = R.

MATH 405

Midterm III

5. (12 points) Let R be a ring and let $a \in R$. Prove that the set $S = \{r \in R : ra = 0\}$ is a subring of R. Note that you should not assume R is commutative.

Proof: (Note that I am using Prop 16.10) (Show $S \neq \emptyset$.) We know that $0 \cdot a = 0$. Thus, $0 \in S$. (Show S is closed under multiplication.) Let $x, y \in S$. Observe

> (xy)a = x(ya) b/c mult is associative in R= $x \cdot 0$ b/c $y \in S$ = 0.

Thus $xy \in S$.

(Show $x - y \in S$, $\forall x, y \in S$.) Let $x, y \in S$. Observe that

$$0 = 0 \cdot a = (y + (-y))a = ya + (-y)a = 0 + (-y)a = (-y)a.$$

Thus,

$$(x-y)a = xa + (-y)a = 0 + 0 = 0.$$

Thus, $x - y \in S$.

- 6. (24 points)
 - (a) List all nonisomorphic abelian groups of order 24.

answer: $\mathbb{Z}_8 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_4 \times \mathbb{Z}_3$, $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_3$

(b) Let \mathbb{R} be the ring of real numbers under the usual operations of addition and multiplication. Explain why the function $f : \mathbb{R} \to \mathbb{R}$ defined as f(x) = 2x + 1 is not ring homomorphism.

answer: Observe that for real numbers 1 and 2, $f(1+2) = f(3) = 2 \cdot 3 + 1 = 7$, but $f(1) + f(2) = 2 \cdot 1 + 1 + 2 \cdot 2 + 1 = 8$. Thus f does not respect addition.

(c) Find all group homomorphisms from \mathbb{Z}_{16} to \mathbb{Z}_{18} . Your answer(s) must be stated as functions.

answer: Since gcd(16,18) = 2, we know there are two homomorphisms because there are only two divisors of 2, namely 1 and 2. So, option 1: f(x) = 0 (always a homomorphism) and option 2: f(x) = 9x (b/c 2 is the only number that divides the orders of both groups, the image of f must have order 2)

(d) Give a maximal ideal in the ring \mathbb{Z}_{20} answer: $\langle 2 \rangle$ or $\langle 5 \rangle$ Extra Credit: (5 points) Prove that every finite integral domain is a field.

Proof: Let *R* be a finite integral domain. We must show that for every $r \in R \setminus \{0\}$ there exists an element $r^{-1} \in R$ such that $rr^{-1} = 1$. Observe that 1 is its own inverse.

So let $r \in R \setminus \{0,1\}$ and consider the set $S = \{r^n : n \in \mathbb{Z}^+\}$. Observe that while \mathbb{Z}^+ is infinite, the set S must be finite since $S \subset R$ and R is finite. Thus, there exists some $m, n \in \mathbb{Z}^+$ such that m < n and $r^m = r^n$.

Since *R* is an integral domain, the cancellation law applies. Thus, we can conclude $1 = r^{n-m}$. Since $r \neq 1$, we know $n-m \geq 2$. Thus, we see that $1 = r^{n-m} = r \cdot r^{n-m-1}$ where $n-m-1 \geq 1$. So it follows that r^{n-m-1} is the multiplicative inverse of *r*.